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Here | concentrate on basics: spherical blast waves and their
synchrotron emission. See later for jets and other complexities.

v/ Shocks and jump conditions (Blandford & McKee 1976)
v/ Dynamics

v/ Thermodynamics/Fields

v/ Radiation
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Like Rankine-Hugoniot for normal shocks, relativistic shocks have
jump conditions (Taub). In the ultrarelativistic (v > 1), strong shock
(M > 10r Pysrer > Phetore) limit, these are:

AN

n' = 4yn (1)
U = 4yn-(y— 1)myc? (2)

(See Landau & Lifshitz vol.6 or BM76)

Notel: primed quantities are in the restframe of the blast wave

Note2: henceforth, we neglect flow structure behind shock: all shocked
gas Is in uniform slab behind shock (see BM76 for better way). Right
X . there, we give up getting answers to better than factor 2.
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This is often incorrectly done in literature, so beware.

AW

First: crude version, adiabatic. Initially, shell has Lorentz factor v, and
mass M, S0 Ey = voMoc?.

A swept-up and shocked mass m has thermal energy vmc? in the
shock frame (jump condition), and thus v?mc? in our frame. Equating
the two, we get two results:

¢

v/ Deceleration starts in earnest when shocked gas has similar
energy to initial: Ey = ~yoMoc® ~ v3mc? = m = My/7o.
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Vv, Once m > My, we have Ey = v?mc? = v o« m~ /2.
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More precisely, and adding energy loss, Ey of the shocked shell in our
frame, and the loss when sweeping up mass dm are (BM76, Panaitescu
and Mészaros 1998):

Fe = (r=D)(Mo+m+(1—enl’ (3
dEpq = ey(y—1)c*dm (4)

(so e = 0 Is adiabatic, e = 1 is fully radiative; only the former is treated
consistently in literature.)

Combine:
dy _ 7’ -1 (5)
dm  My+em+2(1—¢e)ym
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Radiative, e = 1.
Note: all light from narrow boundary layer after the shock. This case is
often erroneously used for e = 0 as well.
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E 2
d-y v4 —1
— = — — 6
E dm Mo +m (6)
..‘ <7—1) (Vo—l—l) _ (M0+m0>2 -
- y+1/) \v -1 Mo +m
Two limits:

v/ the shell comes to a stop within a few times M, /~o, SO expand
for m < My: v oc m~! (yme = est.) (1))

v/ form > My, non-relativistic. Then 3 oc m~! (snowplow).
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Shell equation of motion 4

LS ; 4
S E Mo+ (v —1)m = cst. (9)
Rearrange this a bit:
~ Q[
271
: (v = 1)Moc® + (v — )mc® +y(y — )mc* = By~ (10)

Two limits:
v, m > Mjy: third term dominates, so v oc m /2.

Vo v ~1,9% ~ 1+ 352 then 3mv? = Ey: Sedov-Taylor.
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Funny thing about time between explosion rest frame and our frame.
We measure time as the arrival time difference between light emitted at
explosion and light emitted from radius r by the blast wave:

. _r . r_r 2
H(= tobs) = Be ¢ 2v2c¢B(1+P) (11)

If v varies, then still OK differentially: dt = 2375(;
This leads to counterintuitive r(¢), e.g., in uniform medium we have

Y X m_1/2 X 7“_3/2, SO

dt < v 2dr « r3dr = r oc t1/4 (12)
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With all these Lorentz factors, how can GRB prompt emission
fluctuations measure engine behaviour?

Two shells, emitted At.,, apart, with Lorentz factors ~; .

Collision at 7 = cAtyp, él_ﬁgl.

If 49 ~ 21 (to get good radiation efficiency), then r ~ yZcAtepn.

Finally, tobs ~ 5= ~ Atem (1)
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'! Time to start decelerating in uniform medium of density n:

(Tdec)%c = by = (13)
!
3Ly L3 16 [ Es52 1/3-—2/3
T _
tdec = 2d;C = 3. 4(E52/n)1 370 3(/)0 S (15)
Yo €
Note strong dependence on v, and weak dependence on £ and n.

The relativistic phase ends when Ejy = mc?, or

1/3 e\ /3
tm.:( o0 > ~05yr( 51) (16)

drnmypc? n
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At r40c, Shell density and optical depth small: synchrotron radiation.

Get magnetic field and relativistic electrons from parametrized
Ignorance:

»=¢€gU’; Ul =¢€U’
Furthermore, we assume the accelerated electrons have some minimum
Lorentz factor ~,, and a power-law distribution above: n(v) oc yP.

Result:
Tm — leEemp (17)
Me
B = kyyel® (18)
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'! Roughly, we get the following synchrotron characteristics, with
numbers put in for the spherical adiabatic case (see Rybicki &
Lightman, Wijers & Galama 1999):

19

1/5

Va ~1 x 10° Hz e lien JEgy nd® (21

! I
E I Vm X y2vB’ ~3x 10" Hz t 3/ 62 1613/2 o E52
i v

(19)
x (yt?BP)™1 ~ 1 x 10" Hz g 1/2 ;3/3]55_21/271_1 (20)
(21)
(22)

Fn o< ymB’ ~ 1mlJy 613/2 2E52n1/2 (z =1)(22

B
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Some data 1
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Some data 2
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More models
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Inverse Compton photons are 2 times higher in energy, thus even at
same energy output ~,, times lower in flux, mostly unimportant in
observed spectrum, BUT

= Nop~nror~10°-107.107*# =10""  (23)
Ym = YeéeMp/me~ 10-1071-10° = 10° (24)
(For spherical adiabatic case at 1 day; scales as ¢t ~1/2))

Compton y = 2,7 ~ 0.1 — 1 is possible = Inverse compton may
Influence early blastwave evolution and may give X-ray excess.

Other cooling processes: neutrinos, CR proton & neutron leaks, ...
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